How We Test

Our original products were tested on the road and with a quiet open jet wind generator.  Our new products are rigorously tested on the road, trail, and in our custom labs.  We employ a variety of specialized testing techniques.  Each technique has its pros and cons.  Together, they represent a level of rigor that no competitor can match.

Testing on the Road

Road testing allows us to evaluate performance in actual use situations.  We do this in two ways.  The first is riding with the product at one ear and without at the other ear.  We then record impressions.  The second is to instrument cyclists with special in-canal microphones, record wind noise at known speeds (by extracting Garmin data), and then calculate the sound pressure level reductions.  Our experience shows that while our acoustic measurements cannot predict exactly how much wind noise reduction a cyclist will experience, they do provide reasonable expectations. 

Because wind noise varies significantly by speed, we capture wind speed data during our test runs and extract exact cycling speed information from our Garmin 520. The digital anemometer and Garmin data is matched to the recorded sound files to help ensure that our road testing conclusions are as accurate as possible.

We use professional probe microphones for accurate real in-ear measurements - similar to those used by audiologists.  The tip of the probe tube is placed approximately 5 millimeters from the eardrum.  This is the most accurate way to measure wind noise.  We have read about people measuring wind noise by placing a microphone at the center of the rider’s outer ear.  Anyone who has held a microphone in the wind or blown on one knows that they are susceptible to small variations in air pressure (and self generated noise), causing inaccurate measurements. 

However, instrumented road testing is not without its challenges.  Wind direction and wind turbulence levels can change rapidly.  Exact orientation of a cyclist's head (yaw / pitch) can be difficult to control.  Because of these issues, we augment our road / trail testing with aeroacoustic testing performed under controlled laboratory conditions.

Testing in the Wind Tunnel

Most wind tunnels are designed for evaluating aerodynamic effects like drag and are noisy.  Aeroacoustic testing requires extensive noise suppression, and these quiet wind tunnels are rare, specialized, and expensive.  Cat-Ears designed and built two quiet open jet wind tunnels.  With careful attention to sound and vibration damping, they are remarkably quiet for the volume of air moved.  We have constructed 'test heads' (Custom Acoustic Test Simulators - CATS) that are equipped with realistic silicon ears and simulated ear canals.  Miniature condenser microphones are placed in the ear canals - at the location of the ear drum.  This is critical for correct real ear WNR measurements.

We test using multiple helmet brands (Bell, Giro, Bontrager, Rudy, etc.) and retail price points (<$50 to ~$250).  We also test with different cycling eyewear.  Helmets and eyewear can impact the amount of wind noise.

Three Custom Acoustic Test Simulators (CATS) and Two Quiet Open Jet Wind Tunnels allow us to perform extremely controlled testing variations (variable speed, yaw, pitch) in both Colorado and New Jersey. 

Road to Wind Tunnel Coherence

Understanding the differences between road and laboratory testing is important.  Accordingly, we perform CATS vs. real head comparisons in the wind tunnel.  Identifying differences helps us make better measurement comparisons.

Wind Tunnel - Smoke Visualization

Over the last several years, we have improved our 15 to 35 mph wind tunnel smoke visualization capabilities.  The video below shows how air flows over and through the AirStreamz Slim.  This engineered combination reduces the most wind noise.  Flow through also helps wick away perspiration and keeps your ears comfortable on hot days.

Hydrodynamic Flume - Flow Visualization

 

Since wind noise is created by air flow, we need to understand the aerodynamics of air flowing around a cyclist's head, and the impact on that air flow when using Cat-Ears.  Visualizing air flow, especially when looking for very localized turbulence, is difficult.  However, air and water are both fluids and at low speeds their behaviors are essentially the same.  Thus it is possible to do 'aerodynamic testing' using water, and observe those flows in great detail.   

We designed and built a water tunnel - otherwise known as a hydrodynamic flume - to meet our unique test requirements.  The test chamber is large enough to hold a 'slice' from one of our simulated heads.  We can pump water through it to reach an air speed equivalent of 15 MPH.  We inject fluorescein dye into the flow and illuminate it with LED and laser ultra-violet lamps.  We then capture high resolution videos and photographs, allowing us to see differences in turbulent flow patterns as we make design changes to our products.

 

 

Specialized testing techniques that no competitor can match.

Cat-Ears / AirStreamz is a leading manufacturer of aero-acoustically designed passive wind noise reduction products.  Tested and recommended by respected publications and professionals, Cat-Ears / AirStreamz are the highest rated and best selling products designed for serious cyclists / outdoor sports enthusiasts.  Our products are 100% Satisfaction Guaranteed and Made in the USA.

Cat-Ears / AirStreamz | Aeroacoustic Engineering Research and Product Development

Safer Cycling Through Sound Engineering™ | Look Ahead Hear Behind™ | Sight - Sound - Safety

Copyright © 2012 - 2020 | Cat-Ears, LLC | AirStreamz | All Rights Reserved | Privacy Policy | Terms of Use